Министерство науки и высшего образования Российской Федерации НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

А. Ю. БАРНЯКОВ А. А. КАТЦИН А. П. ОНУЧИН

ПРОХОЖДЕНИЕ ЧАСТИЦ ЧЕРЕЗ ВЕЩЕСТВО

ЗАДАЧИ

Утверждено Редакционно-издательским советом университета в качестве учебного пособия

> НОВОСИБИРСК 2023

Рецензенты:

Е. А. Кравченко, канд. физ.-мат. наук, зав. лаб. УНЛНМРИИ ФФ НГУ, доцент кафедры ФЭЧ НГУ

А. В. Соколов, канд. физ.-мат. наук, старший научный сотрудник ИЯФ СО РАН

Работа подготовлена на кафедре электрофизических установок и ускорителей

Барняков А. Ю.

Б255 Прохождение частиц через вещество: задачи : учебное пособие / А. Ю. Барняков, А. А. Катцин, А. П. Онучин. – Новосибирск : Изд-во НГТУ, 2023. – 67 с.

ISBN 978-5-7782-5007-9

В учебном пособии излагаются основы теории курса «Экспериментальные методы ядерной физики». Приведены основные формулы и выражения для расчетов по теме «Прохождение частиц ядерного излучения через вещество». Представлен пример комплексного решения актуальной задачи физика-экспериментатора на примере действующей электрофизической установки. Сформулирован ряд задач по курсу «Экспериментальные методы ядерной физики» для самостоятельного решения.

Книга содержит краткие справочные данные о свойствах веществ и материалов, актуальные для решения большинства задач по курсу.

Учебное пособие предназначено для студентов V и VI курсов ФТФ направлений 03.04.02 «Физика» и 11.04.01 «Радиотехника», изучающих экспериментальные методы ядерной физики.

УДК 539.1(075.8)

ISBN 978-5-7782-5007-9

- © Барняков А. Ю., Катцин А. А., Онучин А. П., 2023
- © Новосибирский государственный технический университет, 2023

введение

В современном мире человек все чаще сталкивается с ядерным излучением. Помимо естественного радиационного фона, т. е. космических лучей (примерно раз в секунду на уровне моря через квадратный дециметр пролетает один космический мюон) существуют также радиоактивные изотопы, попадающие в окружающую нас среду, воду и воздух при добыче и обработке полезных ископаемых и др. Человек также встречается с ядерными излучениями в медицине (рентгенографические исследования, позитронно-эмиссионная томография, разнообразные радиологические методы лечения онкологических заболеваний и др.). Иметь представление об основных процессах, происходящих на физическом уровне при прохождении частиц ядерного излучения через вещество, крайне полезно любому современному человеку. Специалистам (инженерам, научным сотрудникам и лаборантам), которые в силу своей профессиональной деятельности работают или часто сталкиваются с разными видами ядерных излучений, необходимо также уметь делать хотя бы простые количественные расчеты и оценки процессов, происходящих при прохождении частиц через вещество.

Настоящее учебное пособие является вспомогательным материалом при изучении курса «Экспериментальные методы ядерной физики». В частности, оно предназначено для более глубокого и самостоятельного изучения той части курса, в которой рассматриваются вопросы и особенности взаимодействия частиц ядерного излучения при прохождении через вещество. Частицами ядерного излучения принято называть альфа-, бета-, гамма-излучение, а также ускоренные заряженные частицы (электроны, протоны, ионы) посредством ускорителей или в составе космических лучей. Учебное пособие состоит из трех частей.

В первой части рассматриваются основные формулы и выражения, которые удобно использовать при решении задач и для количественных оценок процессов, происходящих при прохождении частиц через вещество.

Во второй части приведен пример решения типичной задачи физика-экспериментатора. Всесторонне рассмотрен процесс прохождения через вещество не только одной частицы, но также и вторичных частиц, образованных в результате взаимодействия. Таким образом, комплексное решение представленного примера показывает, как можно использовать в расчетах большинство формул и законов, изучаемых в рамках вышеупомянутого курса.

Третья часть содержит задачи по трем темам (прохождение тяжелых частиц, электронов и γ-квантов через вещество). Самостоятельное решение таких задач необходимо для приобретения навыка применения формул, а также для получения некоторых количественных представлений о процессах, происходящих при прохождении частиц через вещество. Задачи сформулированы достаточно просто и нацелены на демонстрацию, как правило, одного закона и (или) формулы. Третья часть учебного пособия также содержит список вопросов для самоконтроля.

Список литературы и справочные материалы, полезные для решения задач, приведены в конце учебного пособия.

1. ОСНОВНЫЕ ФОРМУЛЫ И СООТНОШЕНИЯ

В данном разделе кратко, в справочном виде, приведены основные формулы, которые применяются для расчетов и оценок эффектов, происходящих при прохождении частиц через вещество. Более подробно эти соотношения разобраны в учебнике А. П. Онучина «Экспериментальные методы ядерной физики» [1], а также их можно найти в ряде других учебных и научных изданий [2–6].

1.1. Уравнение Бете – Блоха

Потери заряженной частицей энергии на ионизацию и возбуждение атомов вещества рассчитываются по уравнению Бете – Блоха:

$$-\frac{dE}{dt} = 0.31 \frac{z_0}{A} \frac{z^2}{\beta^2} \left[\ln\left(\frac{2mc^2}{I(z_0)}\beta^2\gamma^2\right) - \beta^2 - \delta(\beta^2, z_0) \right] \left[\frac{M \Im B}{\Gamma/cM^2}\right],$$

где z_0 и A – зарядовое число и атомный вес вещества соответственно; z – заряд частицы в числе заряда электрона; β – скорость частицы относительно скорости света c; γ – фактор $\gamma = \frac{E}{mc^2}$; t – толщина вещества в единицах поверхностной плотности $t = \rho x$ в $[r/cm^2]$; $I(z_0)$ – ионизационный потенциал $I(z_0) \approx 16z_0$ [эВ]; $\delta(\beta^2, z_0)$ – эффект плотности (рис. 1).

Рис. 1. Ионизационные потери в жидком и газообразном азоте. Иллюстрация эффекта плотности

1.2. Число б-электронов

Число δ -электронов с кинетической энергией в диапазоне от T_1 до T_2 (рис. 2):

$$N_{\delta} = \xi \left(\frac{1}{T_1} - \frac{1}{T_2} \right),$$

где $\xi = 0.15 \frac{z_0}{A} \frac{z^2}{\beta^2} t$ [МэВ].

Условия применимости формулы:

$$\varepsilon_K \approx 14 z_0^2 [\Im B] < T < T_{\max}$$
.

Максимальная кинетическая энергия б-электронов:

$$T_{\max} = \frac{2m_e c^2 (cp)^2}{(Mc^2)^2 + 2Em_e c^2 + (m_e c^2)^2},$$

где m_e – масса электрона (0,511 МэВ/с²), M, E и p – масса, энергия и импульс частицы соответственно.

Рис. 2. К расчету числа б-электронов

1. При γ ≈1 (не релятивистский случай):

$$T_{\max} = \frac{4m_e M}{(M+m_e)^2} \frac{Mv^2}{2}.$$

2. При $\frac{m_e c^2}{2} \ll E \ll \frac{Mc^2}{2m_e c^2} Mc^2$ (умеренно релятивистский случай): $T_{max} \approx 2m_e c^2 \beta^2 \gamma^2.$

1.3. Флуктуации ионизационных потерь

1. Случай гауссовых флуктуаций $(N_{\delta}(T_{\max}) \gg 1)$ (рис. 3):

$$\delta = \frac{\Delta_{1/2}}{\left\langle E_{\text{rep}} \right\rangle} = \frac{2,36\sqrt{\xi T_{\text{max}}}}{\left\langle E_{\text{rep}} \right\rangle}$$

2. Случай флуктуаций Ландау $(N_{\delta}(T_{\max}) \ll 1), N_{\delta}(T > \varepsilon_K) \gg 1$ (рис. 4):

$$\delta = \frac{\Delta_{1/2}}{\left\langle E_{\rm rep} \right\rangle} = \frac{4\xi}{\left\langle E_{\rm rep} \right\rangle},$$

где δ – относительные флуктуации; $\Delta_{1/2}$ – ширина спектра на полувысоте; $E_{\text{тер}}$ – теряемая энергия; ε_K – энергия связи на К-оболочке (максимальная энергия связи в атоме).

Рис. 4. Распределение потерь энергии *E*_{тер} (Ландау)

1.4. Связь пробега частиц с энергией

Ионизационный пробег частицы (R_i) – это длина пути, пройденного частицей до остановки из-за потерь энергии на ионизацию и возбуждение атомов вещества:

$$R_x = \frac{M_x}{M_i} \left(\frac{z_i}{z_x}\right)^2 R_i(E_i, z_0),$$

где R_x и R_i – ионизационные пробеги частицы x и частицы i в веществе с z_0 ; $E_i = \frac{E_x}{M_x} M_i$ – энергия частицы i с массой M_i , при которой обеспечивается равенство скоростей с частицей x, обладающей массой M_x и энергией E_x .

1.5. Разброс пробегов

Графики разброса пробегов частиц см. на рис. 5 и 6.

Рис. 5. К определению разброса пробегов

Относительные флуктуации пробега:

$$\frac{\sigma_R}{R} = \sqrt{200 \frac{m_e}{M} f\left(\frac{T}{Mc^2}\right)},$$

где T – кинетическая энергия; M – масса частицы; m_e – масса электрона; $f\left(\frac{T}{Mc^2}\right)$ – функция, характеризующая вещество (можно найти

в справочниках). Характерный вид функции $f\left(\frac{T}{Mc^2}\right)$ представлен на рис. 7.

1.6. Среднеквадратичный угол многократного рассеяния

Иллюстрация эффекта многократного рассеяния представлена на рис. 8.

Рис. 8. К определению угла многократного рассеяния

Среднеквадратичный угол многократного рассеяния Θ рассчитывается по следующим формулам.

1. Формула Росси:

$$\sqrt{\Theta^2} = \frac{21}{p\beta c} z \sqrt{\frac{t}{X_0}},$$

где *р*β выражено в мегаэлектронвольтах в секунду[МэВ/с]; *X*₀ – радиационная длина – величина, характеризующая вещество и связанная с его параметрами следующим образом:

$$\frac{1}{X_0} = 4\alpha \frac{N_0}{A} z_0 (z+1) r_0^2 \ln\left(183 z_0^{-1/3}\right).$$

Здесь $\alpha = \frac{1}{137}$ – постоянная тонкой структуры; N_0 – число Авогадро; $r_0 = \frac{e^2}{m_e c^2}$ – классический радиус электрона.

Область применимости формулы Росси: число рассеяний $N_{\text{pac}} \gg 1$, т. е.

$$t > t_1 = \frac{1}{\alpha^2} \frac{\sqrt[3]{A\beta^2}}{\pi N_0 z^2 z_0^2 r_0^2} = 1,25 \cdot 10^5 \frac{\sqrt[3]{A\beta^2}}{z^2 z_0^2} \left[\frac{\Gamma}{\text{cm}^2}\right].$$

2. Теория Мольера.

Если $t \le t_1$, то угол многократного рассеяния рассчитывается по теории Мольера:

$$\overline{\Theta^2} = B\Theta_1^2;$$

$$\Theta_1^2 = 0.157 \frac{z^2 z_0 (z_0 + 1)}{A} \frac{t}{(p\beta c)^2},$$

где *t* измеряется в граммах на квадратный сантиметр [г/см²], *pc* – в мегаэлектронвольтах [МэВ].

Коэффициент В находится из решения трансцендентного уравнения

$$B - \ln B = \ln \left(\frac{\Theta_1^2}{\Theta_a^2}\right);$$

$$B \approx 0,82 + 2,54 \log_{10} \left(\frac{\Theta_1^2}{\Theta_a^2} \right),$$

где
$$\frac{\Theta_1^2}{\Theta_a^2} = 7,8 \cdot 10^3 \frac{z^2 (z_0 + 1) \sqrt[3]{z}}{A (1 + 3,35 \alpha_1^2) \beta^2} t$$
, a $\alpha_1 = \frac{1}{137} \frac{z z_0}{\beta}$.

3. Формула Росси с коррекцией:

$$\sqrt{\Theta^2} = \frac{19}{p\beta c} z \sqrt{\frac{t}{X_0}} \left(1 + 0,088 \log_{10} \left(\frac{t}{X_0} \right) \right).$$

Условия применимости:

$$10^{-3} < \frac{t}{X_0} < 10^2.$$

1.7. Поперечное смещение

$$\sqrt{r^2} = \frac{1}{\sqrt{3}}\sqrt{\Theta^2} \cdot L \,,$$

где *L* – толщина слоя вещества, пройденного частицей (рис. 9).

Если учесть, что $r^2 = x^2 + y^2$, то для каждой ортогональной координаты смещение будет выражаться как

$$\sqrt{x^2} = \frac{1}{\sqrt{6}}\sqrt{\Theta^2} \cdot L \qquad \text{if} \qquad \sqrt{y^2} = \frac{1}{\sqrt{6}}\sqrt{\Theta^2} \cdot L.$$

Рис. 9. Иллюстрация поперечного смещения за счет многократного рассеяния

1.8. Число тормозных гамма-квантов

Спектр тормозного излучения ү-квантов показан на рис. 10.

Рис. 10. Спектр тормозного излучения

Число тормозных ү-квантов N_{γ} в диапазоне энергий от E_{γ_1} до E_{γ_2} вычисляется по формуле

$$N_{\gamma}(E_{\gamma_1}...E_{\gamma_2}) \approx \frac{t}{X_0} f(\overline{E_{\gamma}}, E, z_0) \frac{E_{\gamma_2} - E_{\gamma_1}}{E_{\gamma}},$$

где $E_{\gamma} = \frac{E_{\gamma_1} + E_{\gamma_2}}{2}$; f- плавная функция, зависящая от E_{γ} (энергии гамма-кванта), E (энергии электрона) и параметров вещества (рис. 11). Для приблизительных оценок можно принимать $f \approx 1$.

Рис. 11. Функция $f(\overline{E_{\gamma}}, E, z_0)$ для различных энергий электрона [эВ]

1.9. Потери энергии на тормозное излучение

Энергия электронов с учетом потерь на тормозное излучение (рис. 12) рассчитывается по формуле:

$$E = E_0 e^{-\frac{t}{X_0}},$$

где *E*₀ – начальная энергия электрона.

Рис. 12. Тормозное излучение при прохождении электрона через слой вещества

Энергия электронов, при которой ионизационные потери сравниваются с потерями на излучение тормозных γ -квантов (рис. 13), называется критической ($\varepsilon_{\rm kp}$). Существует эмпирическое соотношение для расчета критической энергии:

Рис. 13. Сравнение ионизационных потерь электрона с потерями на тормозное излучение

1.10. Угловое распределение тормозных гамма-квантов

Распределение имеет следующий вид:

$$\sqrt{\Theta_{\gamma}^2} = \frac{m_e c^2}{E} \ln\left(\frac{E}{m_e c^2}\right) q(E, E_{\gamma}, z_0) = \frac{1}{\gamma} \ln(\gamma) q(E, E_{\gamma}, z_0),$$

где q характеризует вещество. Обычно q имеет значение 0,5...0,8, для предварительных оценок часто принимают $q \approx 1$.

Иллюстрация углового распределения приведена на рис. 14.

Рис. 14. К угловому распределению тормозных ү-квантов

1.11. Коэффициент поглощения гамма-квантов

Гамма-кванты взаимодействуют с веществом в основном тремя способами: посредством фотоэффекта (ф.э.), комптон-эффекта (к.э.) и рождения электрон-позитронных пар (р.п.). Сечение σ или вероятность первых двух эффектов с ростом энергии падает, в то время как эффект рождения e^+e^- -пар возникает только при энергии $E_{\gamma} > 1$ МэВ, растет и выходит на плато.

Суммарное сечение процесса поглощения ү-квантов:

$$\sigma = \sigma_{\phi, \Im} + \sigma_{\kappa, \Im} + \sigma_{p, \Pi}$$

Коэффициент поглощения связан с сечением:

$$\mu = \frac{N_0}{A} \sigma_{\text{атом}} \left[\frac{\text{см}^2}{\Gamma} \right]$$
 или $\mu = \frac{N_0}{A} \rho \sigma_{\text{атом}} \left[\frac{1}{\text{см}} \right].$

Суммарный коэффициент поглощения:

$$\mu = \mu_{\phi, \mathfrak{H}} + \mu_{\kappa, \mathfrak{H}} + \mu_{p, \Pi}$$

При высоких энергиях μ определяется процессом рождения пар и стремится к значению $\mu = \frac{7}{9} \frac{1}{X_0}$ (рис. 15).

Рис. 15. Коэффициент поглощения ү-квантов за счет рождения пар и комптоновского рассеяния

Иногда используют величину, обратную коэффициенту поглощения: $\lambda = \frac{1}{\mu}$ (длина ослабления).

Число ү-квантов, прошедших слой толщиной t:

$$N = N_0 e^{-n\sigma t} = N_0 e^{-\mu t} = N_0 e^{-\frac{t}{\lambda}}.$$

2. ПРИМЕР РЕШЕНИЯ ЗАДАЧ

Рассмотрим следующую ситуацию. В детекторе КЕДР [7] (см. изображение на последней странице обложки) установлена система аэрогелевых пороговых черенковских счетчиков, которые срабатывают, когда частица пролетает со скоростью выше, чем скорость рас-

Рис. 16. Прохождение заряженной частицы через баррельные аэрогелевые счетчики. По комбинации срабатывания счетчиков можно идентифицировать К-мезон пространения света в среде (в данном случае в аэрогеле)^{*}. В ходе экспериментов со встречными электрон-позитронными пучками на комплексе ВЭПП-4М [8] часто рождаются К-мезоны.

Необхолимо (рассчитать). оценить с какой вероятностью К-мезон с кинетической энергией 1 ГэВ при перпендикулярном пролете даст сигнал в аэрогелевом счетчике детектора КЕДР в первом слое (по ходу частицы из места встречи пучков) и во втором (рис. 16), если **учесть**. что показатель преломления плотность аэрогеля аэрогеля n = 1,05, $\rho = 0,234 \text{ г/см}^3$, толщина счетчика в каждом слое 7 см, взаимодействием частицы со стенками счетчика в этих расчетах можно пренебречь.

^{*} Аэрогель – это прозрачный материал с уникальным значением показателя преломления в оптическом диапазоне длин волн (от 300 до 700 нм): от 1,002 (эквивалентно показателю преломления метана под давлением 20 атмосфер) до 1,2 (показатель преломления кристалла NaF).

Дано:

$$T_K = 1 \ \Gamma \Rightarrow B$$
,
 $E_{0_K} \approx 500 \ M \Rightarrow B/c^2$ (точное значение 493 $M \Rightarrow B/c^2$),
аэрогель: $n = 1,05$, $x = 7 \ cm$, $\rho = 0,234 \ r/cm^3$.

Условия возникновения черенковского излучения получаются из следующего отношения:

$$\cos \theta_C = \frac{1}{n\beta} \Longrightarrow \beta_{\Pi \text{opor}} = \frac{1}{n} = \frac{1}{1,05} \approx 0,95;$$
$$\beta = \frac{\sqrt{\gamma^2 - 1}}{\gamma} = \left| \gamma = \frac{T}{E_0} + 1 = 3 \right| = \frac{\sqrt{3^2 - 1}}{3} \approx 0,94.$$

То есть сам К-мезон излучать черенковское излучение не будет, но он может выбить в аэрогеле δ -электроны со скоростью выше пороговой, которые будут излучать. Пороговую кинетическую энергию электронов $T_{\text{порог}}^{e}$ определяем следующим образом:

$$T_{\Pi \text{OPOT}}^{e} = m_{e}(\gamma_{\Pi \text{OPOT}} - 1) = m_{e} \left(\frac{1}{\sqrt{1 - \beta_{\Pi \text{OPOT}}^{2}}} - 1\right) =$$
$$= 0,511 \text{ M}_{9}\text{B} \cdot \left(\frac{1}{\sqrt{1 - 0.95^{2}}} - 1\right) = 1,125 \text{ M}_{9}\text{B}.$$

Теперь мы знаем, что черенковский свет в аэрогелевом счетчике может дать электрон с $T \ge 1,125$ МэВ. Определим число δ -электронов в интервале энергий от $T_1 = 1,125$ МэВ до $T_2 = T_{\text{max}}$. Так как случай умеренно релятивистский ($\gamma = 3$), можно воспользоваться упрощенной формулой

$$T_{\text{max}} = 2m_e c^2 \beta^2 \gamma^2 = 2 \cdot 0,511 \cdot 0,94^2 \cdot 3^2 \approx 8 \text{ M} \Rightarrow \text{B}.$$

Получим

$$N_{\delta} = \xi \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) = \left(\left(0, 15 \frac{z_{0}}{A} \frac{z^{2}}{\beta^{2}} t\right) \text{ M} \Rightarrow \text{B} \right) \left(\frac{1}{1, 125 \text{ M} \Rightarrow \text{B}} - \frac{1}{8 \text{ M} \Rightarrow \text{B}} \right) =$$
$$= \left(\left(0, 15 \cdot 0, 5 \cdot \frac{1}{0, 94^{2}} \left(7 \text{ cm} \cdot 0, 234 \frac{\Gamma}{\text{cm}^{3}} \right) \right) \text{ M} \Rightarrow \text{B} \right) \times$$
$$\times \left(\frac{1}{1, 125 \text{ M} \Rightarrow \text{B}} - \frac{1}{8 \text{ M} \Rightarrow \text{B}} \right) =$$
$$= 0, 139 \text{ M} \Rightarrow \text{B} \cdot (0, 889 \text{ M} \Rightarrow \text{B}^{-1} - 0, 125 \text{ M} \Rightarrow \text{B}^{-1}) \approx 0, 11.$$

То есть с вероятностью 11 % К-мезон с допороговой энергией будет давать сигнал в аэрогелевом черенковском счетчике детектора КЕДР.

Чтобы оценить вероятность того, что этот же К-мезон даст сигнал во втором слое аэрогелевых счетчиков, оценим пробег, флуктуацию пробега, ионизационные потери и флуктуацию ионизационных потерь К-мезона.

2.1. Пробег

Оценка:

$$R = \frac{T}{\Delta E} = \frac{T}{\left(-\frac{dE}{dt}\right)_{\min}} \cdot \frac{1}{\beta^2} = \frac{1000 \text{ M} \cdot \text{B}}{2 \text{ M} \cdot \text{B} \frac{\text{cm}^2}{\Gamma} \cdot \frac{1}{0.94^2}} \approx 442 \text{ r/cm}^2.$$

График. Для графического решения задачи можно взять зависимость $\frac{R}{Mc^2}$ ($\beta \gamma = \frac{p}{Mc}$) для углерода (в литературе иногда можно встретить обратную зависимость, например, в книге *Б. Росси.* Частицы больших энергий. ГИТТЛ, 1955). Получаем

$$\frac{R}{M} \approx 1000 \quad \frac{\Gamma}{cM^2} \frac{1}{\Gamma_{9B}} \quad при \quad \beta\gamma \approx 3 \Longrightarrow$$

$$R = 1 \quad \frac{\Gamma}{cM^2} \frac{M_{9B}}{c^2} \cdot 493 \quad \frac{M_{9B}}{c^2} = 493 \quad \frac{\Gamma}{cM^2} \quad или$$

$$R = 1 \quad \frac{\Gamma}{cM^2} \frac{M_{9B}}{c^2} \cdot 493 \quad \frac{M_{9B}}{c^2} \cdot \frac{1}{0,234 \frac{\Gamma}{cM^3}} = 2106 \quad cM \approx 21 \quad M.$$

2.2. Разброс пробегов

Ход решения:

$$\frac{\sigma_R}{\overline{R}} = \sqrt{200 \frac{m_e}{M}} f\left(\frac{T}{Mc^2}\right) = \sqrt{200 \frac{m_e}{M}} f\left(\frac{T}{Mc^2} = 2\right) =$$
$$= \sqrt{200 \cdot \frac{0.5}{493}} \cdot 0,026 = 1,16 \%.$$

2.3. Ионизационные потери

Выполним следующие вычисления:

$$E_{\rm rep} = \left(-\frac{dE}{dt}\right)_{\rm min} \cdot t ;$$

$$t = \rho x = 0,234 \quad \frac{\Gamma}{cM^3} \cdot 7 \quad cM \approx 1,64 \quad \frac{\Gamma}{cM^2};$$

$$\beta \gamma \approx 3 < 4, \Longrightarrow$$

$$E_{\rm rep} = \left(-\frac{dE}{dt}\right)_{\rm min} \cdot t \frac{1}{\beta^2};$$
$$E_{\rm rep} = \left(-\frac{dE}{dt}\right)_{\rm min} \cdot t \frac{1}{\beta^2} = 2 \quad \text{M} \Rightarrow \text{B} \frac{\text{cM}^2}{\Gamma} \cdot 1,64 \quad \frac{\Gamma}{\text{cM}^2} \cdot \frac{1}{0,94^2} \approx 0,37 \quad \text{M} \Rightarrow \text{B}.$$

Для определения погрешности измерения энергии К-мезона в калориметре, вносимой системой аэрогелевых счетчиков, выполним следующие расчеты.

2.4. Флуктуация ионизационных потерь

Вычислим

$$\begin{split} T_{\max} &= 2m_e c^2 \beta^2 \gamma^2 = 2 \cdot 0,511 \text{ МэВ} \cdot 3^2 \approx 9 \text{ МэВ};\\ N &= \frac{\xi}{T_{\max}} = \frac{0,139 \text{ МэВ}}{9 \text{ МэB}} \approx 15 \cdot 10^{-3} \ll 1 - \phi$$
луктуации Ландау;
$$\delta_{\Pi} &= \frac{4\xi}{E_{\text{тер}}} = \frac{4 \cdot 0,139 \text{ МэB}}{3,7 \text{ МэB}} \approx 15 \%. \end{split}$$

Определим также угол многократного рассеяния К-мезона в системе аэрогелевых черенковских счетчиков и возможное его поперечное смещение относительно трека, реконструированного и экстраполированного по дрейфовой камере.

2.5. Многократное рассеяние и поперечное смещение

Нетрудно вычислить, что толщина аэрогеля и алюминия (каждый слой счетчиков с двух сторон ограничен алюминиевым корпусом тол-

щиной 1 мм) значительно меньше, чем $t_1 = 1,25 \cdot 10^5 \frac{\sqrt[3]{A\beta^2}}{z^2 z_0^2} \left[\frac{\Gamma}{cm^2}\right],$

поэтому для расчетов среднеквадратичного угла многократного рассе-

яния нельзя использовать формулу Росси. Оценим толщину аэрогеля и алюминиевых корпусов в единицах радиационной длины (X_0) :

$$\frac{t}{X_0} = \frac{4t_{Al_{(1\,\mathrm{MM})}}}{X_0^{Al}} + \frac{2t_{Aer_{(70\,\mathrm{MM})}}}{X_0^{Aer}} = 4 \cdot \frac{0.1 \frac{\Gamma}{\mathrm{cM}^2}}{8.9 \frac{\Gamma}{\mathrm{cM}^2}} + 2 \cdot \frac{1.64 \frac{\Gamma}{\mathrm{cM}^2}}{27.25 \frac{\Gamma}{\mathrm{cM}^2}} = 0.16.$$

Следовательно, для расчетов с точностью ~10 % можно воспользоваться формулой Росси с коррекцией:

$$\sqrt{\Theta^2} = \frac{19}{p\beta c} z \sqrt{\frac{t}{X_0}} \left(1 + 0,088 \log_{10} \left(\frac{t}{X_0} \right) \right) =$$
$$= \frac{19}{1409 \cdot 0.94} \cdot 1 \cdot \sqrt{0.16} \left(1 + 0,088 \cdot \log_{10} \left(0.16 \right) \right) = 5 \cdot 10^{-3} \text{ рад.}$$

Тогда поперечное смещение составит:

$$\sqrt{r^2} = \frac{1}{\sqrt{3}}\sqrt{\Theta^2} \cdot L = \frac{1}{\sqrt{3}} \cdot 5 \cdot 10^{-3} \cdot 14 \text{ cm} = 0,039 \text{ cm} = 3,9 \text{ mm}$$

или

$$\sqrt{x^2} = \sqrt{y^2} = \frac{1}{\sqrt{6}}\sqrt{\Theta^2} \cdot L = \frac{1}{\sqrt{6}} \cdot 5 \cdot 10^{-3} \cdot 14 \text{ cm} = 0,028 \text{ cm} = 2,8 \text{ mm}.$$

Кроме ионизационных потерь электрон может излучать тормозные γ -кванты. Определим минимальную энергию γ -кванта, необходимую для того, чтобы произвести электрон или позитрон с энергией выше пороговой для черенковского излучения, т. е. $T > T_{nopor}^e = 1,125$ МэВ. При таких энергиях γ -кванты взаимодействуют с веществом в основном посредством комптоновского рассеяния или рождения пар (сечение фотоэффекта быстро спадает с энергией и в аэрогеле, так как это легкий материал с небольшим z_0 и сечение фотоэффекта не очень велико).

2.6. Комптон-эффект

Максимальная энергия будет передаваться электрону, когда рассеянный ү-квант будет с минимальной энергией, то есть при рассеянии на 180°:

$$(E'_{\gamma})_{\min} = \frac{E_{\gamma}}{1 - \frac{E_{\gamma}}{mc^{2}}(1 - \cos\theta)} = \frac{E_{\gamma}}{1 + 2\frac{E_{\gamma}}{mc^{2}}};$$

$$(T'_{e})_{\max} = E_{\gamma} - (E'_{\gamma})_{\min} = \frac{2E_{\gamma}E_{\gamma}}{mc^{2} + 2E_{\gamma}} \Rightarrow$$

$$E_{\gamma}^{2} - E_{\gamma}(T'_{e})_{\max} - \frac{(T'_{e})_{\max}mc^{2}}{2} = 0 \Rightarrow$$

$$E_{\gamma} = \frac{(T'_{e})_{\max} + \sqrt{(T'_{e})_{\max}^{2} + 2(T'_{e})_{\max}mc^{2}}}{2} =$$

$$= \frac{1.125 \text{ M}_{9}\text{B} + \sqrt{(1.125 \text{ M}_{9}\text{B})^{2} + 2 \cdot 1.125 \text{ M}_{9}\text{B} \cdot 0.511 \text{ M}_{9}\text{B}}}{2} = 1.34 \text{ M}_{9}\text{B}.$$

2.7. Рождение электрон-позитронных пар

При рождении пар есть пороговая энергия $E^{порог}$, при которой рожденные пары имеют нулевую кинетическую энергию. Тогда интересующая нас энергия γ -кванта равна

$$E_{\gamma} = T_{\Pi \text{OPOF}}^{e} + E_{\gamma}^{\Pi \text{OPOF}} = T_{\Pi \text{OPOF}}^{e} + 2mc^{2} \left(1 - \frac{m}{M_{\Re}} \right) \approx$$
$$\approx 1,125 \text{ M} \Rightarrow \text{B} + 1,022 \text{ M} \Rightarrow \text{B} = 2,147 \text{ M} \Rightarrow \text{B}.$$

Можно заключить, что ү-кванты с энергией 1,34 МэВ способны посредством комптоновского рассеяния передать электронам энергию, достаточную для испускания черенковского излучения в аэрогеле. Гамма-кванты с энергией выше 2,147 МэВ способны порождать электрон-позитронную пару, в которой хотя бы одна частица может иметь скорость выше порога черенковского излучения в аэрогеле.

Таким образом, задача сводится к расчету числа тормозных γ -квантов с энергией в диапазоне от 1,34 до 9 МэВ. Для оценки рассмотрим, какую энергию на тормозное излучение может потратить δ -электрон с максимальной энергией T = 9 МэВ.

2.8. Энергия, потраченная на тормозное излучение

Выполним следующий расчет:

$$(E_{\gamma})_{\text{H3JI}} = \frac{t}{X_0} f\left(\overline{E_{\gamma}}, E, z_0\right) (E_{\gamma_2} - E_{\gamma_1}) = \\ = \begin{vmatrix} t = 7 \text{ cM} \\ X_{0_{aer}} = 136 \text{ cM} \\ f(5, 17; 9; 14 + 2 \cdot 8) \approx 0, 6 \end{vmatrix} = 0,23 \text{ M3B.}$$

Видно, что в среднем энергия, теряемая электроном с кинетической энергией 9 МэВ на излучение, в несколько раз меньше необходимой на образование нового электрона, способного произвести черенковские фотоны в аэрогеле. Тем не менее можно оценить вероятность такого процесса, посчитав число тормозных γ-квантов в диапазоне энергий от 1,34 до 9 МэВ.

2.9. Число тормозных гамма-квантов

Выполним расчет:

$$N_{\gamma} \approx \frac{(E_{\gamma})_{\text{H3Л}}}{E_{\gamma}} = \frac{0,23 \text{ M} \cdot \text{B}}{5,17 \text{ M} \cdot \text{B}} \approx 45 \cdot 10^{-3}.$$

Выводы

В результате проведенных расчетов можно сделать вывод, что К-мезон с кинетической энергией 1 ГэВ (допороговый, т. е. не излучающий черенковские фотоны в аэрогеле с n = 1,05) будет в 11 % случаев выбивать в аэрогеле б-электроны, способные излучать черенковские фотоны. Самые быстрые б-электроны (T = 9 МэВ), в свою очередь, в 4,5 % случаев будут излучать тормозной ү-квант, способный произвести в аэрогеле электрон (позитрон), испускающий черенковское излучение. Таким образом, можно оценить максимум допороговой эффективности аэрогелевого черенковского счетчика детектора КЕДР:

$$eff_K^T = 1 \ \Gamma \ni B = 0,11 + 0,11 \cdot 45 \cdot 10^{-3} \approx 0,115 \rightarrow 11,5 \%.$$

Поскольку К-мезон с кинетической энергией $T_K = 1000$ МэВ при прохождении счетчика первого слоя теряет очень маленькую энергию (3,7±15% МэВ) и пробег в аэрогеле составляет $21\pm1,16$ м, то в счетчиках второго слоя системы будут происходить все те же процессы, и сделанные выводы и расчеты в этом случае также будут актуальны и справедливы.

3. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Тема 1. ПРОХОЖДЕНИЕ ТЯЖЕЛЫХ ЧАСТИЦ ЧЕРЕЗ ВЕЩЕСТВО

1. Протон с энергией 10 МэВ проходит 1 см воздуха при нормальных условиях. Оценить потери энергии на ионизацию.

2. Протон с энергией 1 ГэВ проходит 1 см свинца. Оценить потери на ионизацию. Найти потери на ионизацию по формуле Бете – Блоха.

3. Протон с энергией 1 ГэВ проходит 1 мм свинца. Оценить потери на ионизацию. Найти потери на ионизацию по формуле Бете – Блоха.

4. Протон с энергией 50 МэВ проходит 1 см воздуха при нормальных условиях. Найти число δ-электронов в интервале энергии 10...15 кэВ.

5. Мюон с кинетической энергией T = 1 ГэВ проходит 1 см воды. Найти флуктуацию ионизационных потерь.

6. Протон с кинетической энергией T = 20 МэВ проходит 1 мм воды. Найти флуктуацию ионизационных потерь.

7. Найти пробег μ-мезона с энергией T = 10 МэВ в воздухе, исполь-

зуя данные для нерелятивистской α -частицы : $R_{\alpha_{\text{воздух}}} = 0.3T_{[M \rightarrow B]}^{3/2}$ [см].

8. Найти пробег мюона с энергией 1 ГэВ в свинце (г/см²). Получить грубые оценки и точное значение (график) по известному пробегу протона в свинце.

9. Найти средний пробег и разброс пробегов для мюона с энергией 70 МэВ в алюминии. Получить грубые оценки и точное значение (таблица и график).

10. Протон с энергией 4 МэВ проходит 1 см воздуха при нормальных условиях. Найти среднеквадратичный угол многократного рассеяния тремя способами: по формуле Росси, по формуле Росси с коррекцией и по формуле Мольера. Найти отношение t/t_1 .

11. Протон с энергией 40 МэВ проходит 1 см воздуха при нормальных условиях. Найти среднеквадратичный угол многократного рассеяния тремя способами: по формуле Росси, по формуле Росси с коррекцией и по формуле Мольера. Найти отношение t/t_1 .

12. Мюон с энергией 1 ГэВ проходит 20 см свинца. Найти среднеквадратичный угол многократного рассеяния тремя способами: по формуле Росси, по формуле Росси с коррекцией и по формуле Мольера. Найти отношение t/t_1 .

Тема 2. ПРОХОЖДЕНИЕ ЭЛЕКТРОНОВ ЧЕРЕЗ ВЕЩЕСТВО

1. Электрон с энергией 100 МэВ проходит 1 мм свинца. Найти число тормозных γ-квантов в интервале энергий 80...90 МэВ.

2. Электрон с энергией 1 ГэВ проходит 1 мм свинца. Найти число тормозных ү-квантов в интервале энергий 10...20 МэВ.

3. Электрон с энергией 100 МэВ проходит 1 мм свинца. Найти потери энергии на ионизацию и на тормозное излучение.

4. Электрон с энергией 100 МэВ проходит 1 мм бериллия. Найти потери энергии на ионизацию и на тормозное излучение.

5. Электрон с энергией 1 ГэВ проходит 1 мм бериллия. Найти потери энергии на ионизацию и на тормозное излучение.

6. Электрон с энергией 100 МэВ проходит 1 м воздуха. Найти потери энергии на ионизацию и на тормозное излучение.

7. Электрон с энергией 1 ГэВ проходит 1 м воздуха. Найти потери энергии на ионизацию и на тормозное излучение.

8. Какой энергией должен обладать электрон, чтобы пройти через 1 см свинца?

9. Пройдет ли электрон с энергией 1 ГэВ через пластину алюминия толщиной в 1 см?

Тема 3. ПРОХОЖДЕНИЕ ГАММА-КВАНТОВ ЧЕРЕЗ ВЕЩЕСТВО

1. Гамма-квант рождает е⁺е⁻-пару на покоящемся электроне. Найти минимальную энергию γ-кванта.

2. Найти минимальную энергию γ-кванта, необходимую для рождения е⁺е⁻-пары в воздухе.

3. Гамма-квант рождает µ⁺µ⁻-пару на покоящемся протоне. Найти минимальную энергию γ-кванта.

4. Найти минимальную энергию γ -кванта для рождения $\mu^+\mu^-$ -пары на покоящемся электроне.

5. Во сколько раз ослабнет поток у-квантов с энергией 4 МэВ после прохождения 1 г/см² свинца (углерода)?

6. Какой толщины надо взять пластину свинца, чтобы ослабить поток γ-квантов с энергией 10 МэВ в 1000 раз?

7. Гамма-кванты с энергией 100 кэВ проходят через алюминиевую пластину t = 1 г/см². Во сколько раз ослабнет поток у-квантов?

8. Во сколько раз ослабнет поток ү-квантов с энергией 1 ГэВ при прохождении свинцовой пластины толщиной 1 см?

вопросы для самоконтроля

1. Что такое радиационная единица длины?

2. Как соотносятся среднеквадратичные углы многократного рассеяния электрона и протона при одинаковой кинетической энергии?

3. Что такое критическая энергия?

4. Чему равна критическая энергия?

5. Какой процесс является наиболее вероятным при прохождении гамма-кванта с энергией 20 МэВ через вещество?

6. Какую размерность может иметь радиационная единица длины?

7. Что такое радиус Мольера?

8. Что ограничивает рост ионизационных потерь при ультрарелятивистских энергиях частицы?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Онучин А. П. Экспериментальные методы ядерной физики / А. П. Онучин. – Изд-во НГТУ, 2010. – URL: http://kedr.inp.nsk.su/~alexbarn/ onuchin-last.pdf (дата обращения: 15.06.2023).

2. *Клайнкнехт К*. Детекторы корпускулярных излучений : пер. с нем. / К. Клайнкнехт. – Москва : Мир, 1990. – URL: http://kedr.inp.nsk.su/~alexbarn/ detkorpus1990.pdf (дата обращения: 15.06.2023).

3. Группен К. Детекторы элементарных частиц / К. Группен. – Сибирский хронограф, 1999.

4. Абрамов А. И. Основы экспериментальных методов ядерной физики / А. И. Абрамов, Ю. А. Казанский, Е. С. Матусевич. – Атомиздат, 1977.

5. Росси Б. Частицы больших энергий / Б. Росси. – ГИТТЛ, 1955.

6. Экспериментальная ядерная физика. В 3 т. Т. 1 / под ред. Э. Сегре. – Москва : Иностранная литература, 1955. – URL: https://search.rsl.ru/ru/record/ 01008285799 (дата обращения: 15.06.2023).

7. Детектор КЕДР / В. В. Анашин и др. // Физика элементарных частиц и атомного ядра. – 2013. – Т. 44, № 4. – С. 1264–1345. – URL: http://www1.jinr.ru/ Pepan/2013-v44/v-44-4/02_an.pdf (дата обращения: 15.06.2023).

8. Ускорительный комплекс ВЭПП-4 / А. Н. Алешаев и др. – Новосибирск : Препринт ИЯФ, 2011.

9. The Particle Data Group (PDG) (official site). – URL: https://pdg.lbl.gov/2021/reviews/contents_sports.html (accessed: 15.06.2023).

СПРАВОЧНЫЕ МАТЕРИАЛЫ

44

10² 9 ₿₹ A 11 6 ω ア G S 4 c 2 9 -Stopping power (- dE/) [MeV cm²]

Пробег тяжелых заряженных частиц в жидком водороде, газообразном гелии, углероде, железе и свинце.

Например: для K⁺ с импульсом 700 МэВ/с $\beta\gamma = 1,42$. Для свинца R/M ≈ 396 , поэтому пробег составляет 195 г/см² (17 см).

Пробег для мюонов

ины Рад. ед. длины	4 ² Х₀, см	7,527E+05	890,4	5,671E+05	755,2	35,276	3,260E+04	47,07	8,896	1,176E+04	14,00	3,560	1,758	1,436	1547	2,872	0.561
Рад. ед. дл	X_0 , Γ/ch	63,04		94,32		62,19	37.00	66,10	24,01	10.55		16,16	13,84	12,86	8 48	0.0	6 27
Плотность,	Γ/cM^3	8,376E-05	0,071	1,663E-04	0,125	1,848	1,165E-03	0,8070	2,699	1,662E-03	1,396	4,540	7,874	8,960	5,483E-03	2,953	11 250
VIL	AIN.	0,99212		7.40067	10/11/0	0,44384	0 40076	0/66+50	0,48181	0.45050	10001.0	0,45961	0,46557	0,45636	0.41120	12111.0	0 20575
L	7	-		۰ ۲	1	4	r	-	13	18	01	22	26	29	54	5	63
Morrow	материал	газ (20 °С, 1 атм.)	жидкость	газ (20°С, 1 атм.)	жидкость	Be	газ (20 °C, 1 атм.)	жидкость	AI	газ (20 °С, 1 атм.)	жидкость	Τi	Fe	Cu	газ (20 °С, 1 атм.)	жидкость	Dh
		H,	7	Не	211		Z	112		År					Ye	2	

Рад. ед. длины	X_0, cM	136,2	12,2	3,039E+04	39,31 36,08 4,772E+04		34,07		48,22		41,31		50,31		Z 1,11	6.411	0,711	
Рад. ед. длины	X_0 , r/cm^2	27,25	27,05	36,62	36,08			40 SS		44,85		43,79		44,77	23,65		11,54	
Плотность,	r/cm^3	0,2000	2,200	1,205E-03	0,9180 1,000 7,562E-04		1,190		0.0200	00000	1,060		0,8900	1,120		1,800		
Z/A		0,50093	0,49930	0,49919	0,55509			0,53937		0,57275		0,53768		0,57034	0,47969		0,43997	
-	1																	
Материал		рогель (n=1,05)	Кварц, SiO ₂	Воздух	лёд	жидкость	пар (20 °С, 1 атм.)	ническое стекло,	C(CH ₃)(COOCH ₃)) _n]	Парафин,	(CH ₂) _{n/approx23} CH ₃)	Полистирол,	C ₆ H ₅ CHCH ₂) _n]	тилен, [(CH ₂ CH ₂) _n]	еон-12, (CF ₂ Cl ₂)	(20 °C, 1 arm.)	еон-1311, (CF ₃ I)	20 °C, 1 arm.)
		еЧ				Вода		Opra	[(CH ₂ C		(CH ₃][(€ипоП	Φþ	0	ф)

оглавление

Введение	3
1. ОСНОВНЫЕ ФОРМУЛЫ И СООТНОШЕНИЯ	5
1.1. Уравнение Бете – Блоха	5
1.2. Число δ-электронов	6
1.3. Флуктуации ионизационных потерь	7
1.4. Связь пробега частиц с энергией	8
1.5. Разброс пробегов	9
1.6. Среднеквадратичный угол многократного рассеяния	10
1.7. Поперечное смещение	12
1.8. Число тормозных гамма-квантов	13
1.9. Потери энергии на тормозное излучение	14
1.10. Угловое распределение тормозных гамма-квантов	16
1.11. Коэффициент поглощения гамма-квантов	16
2. ПРИМЕР РЕШЕНИЯ ЗАДАЧ	18
2.1. Пробег	
2.2. Разброс пробегов	21
2.3. Ионизационные потери	21
2.4. Флуктуация ионизационных потерь	22
2.5. Многократное рассеяние и поперечное смещение	22
2.6. Комптон-эффект	24
2.7. Рождение электрон-позитронных пар	24
2.8. Энергия, потраченная на тормозное излучение	25
2.9. Число тормозных гамма-квантов	25
Выводы	
З. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОИ РАБОТЫ	27
3. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОИ РАБОТЫ Библиографический список	27 31

Барняков Александр Юрьевич Катцин Александр Андреевич Онучин Алексей Павлович

ПРОХОЖДЕНИЕ ЧАСТИЦ ЧЕРЕЗ ВЕЩЕСТВО

ЗАДАЧИ

Учебное пособие

Редактор Е.Е. Татарникова Выпускающий редактор И.П. Брованова Дизайн обложки А.В. Ладыжская Компьютерная верстка Н.В. Гаврилова

Налоговая льгота – Общероссийский классификатор продукции Издание соответствует коду 95 3000 ОК 005-93 (ОКП)

Подписано в печать 17.07.2023. Формат 60 × 84 1/16. Бумага офсетная Тираж 50 экз. Уч.-изд. л. 3,95. Печ. л. 4,25. Изд. № 26. Заказ № 225 Цена договорная

Отпечатано в типографии Новосибирского государственного технического университета 630073, г. Новосибирск, пр. К. Маркса, 20